

NOON REPORT TO REAL TIME MONITORING

Digitalisation without experience is data without direction

Chief Eng. Omur Karatas

From hands-on engineering to digital innovation — 47 years of experience powering smarter ships

Founder of ORTECH MARINE A.S.

Founder and President of the Turkish Ship Repair Association (GOSDER)

Our philosophy

Less repair, fewer spares – smarter maintenance.

Lower emissions, silent seas – more sailing.

Less waste, better cooling – maximum efficiency.

Sail smarter. Stay ahead.

I am a **Chief Engineer** with **47 years of experience**, leading **Ortech Marine** for the past **10 years**, driving sustainable and innovative **green solutions**.

We specialize in scrubber filtration, ballast water treatment, and sterntube leakage prevention. Our expertise extends to antifouling systems, real-time monitoring, hybrid power solutions, remote automation control, and gearbox, main, and auxiliary engine repair and maintenance.

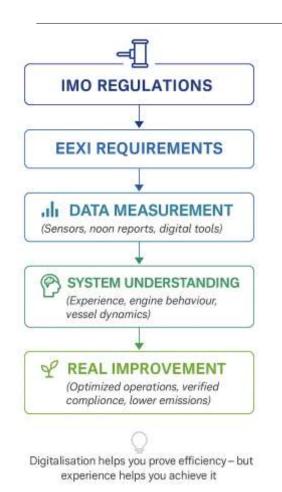
Where Digital Tools Drive Change — and Where They Hit Rough Seas in Shipping Decarbonization

Technology supports experience — it doesn't replace it

Introduction of Digitalisation

- Global shipping = ~3% of global CO₂ emissions
- IMO target: Net zero emissions by 2050
- Digitalisation plays a key role in monitoring, optimizing, and accelerating decarbonisation
- But digital tools bring both major benefits and new challenges

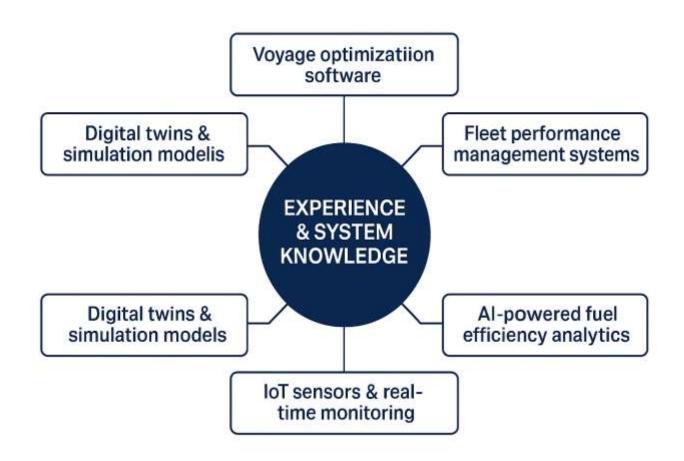
Decarbonization: A Maritime Priority


Maritime stakeholders recognize **decarbonization** as a critical priority, driven by increasing regulatory pressures and industry initiatives like the **Sea Cargo Charter**. Compliance with frameworks such as **IMO 2030**, **EU ETS**, **EEXI**, and **CII** is essential.

But how can you integrate **emission considerations** into voyage planning while ensuring operational efficiency?

"Compliance comes from control — and control starts with understanding."

Energy Efficiency Existing Ship Index – EEXI



The **EEXI**, introduced by the **IMO**, measures a ship's **technical energy efficiency** to reduce emissions.

- Applies to ships ≥400 GT on international voyages (Regulation 23).
- One-time approval required, no later than the first periodical survey in 2023.
- Must be calculated before the first air pollution prevention or energy efficiency certification survey (MARPOL Annex VI)

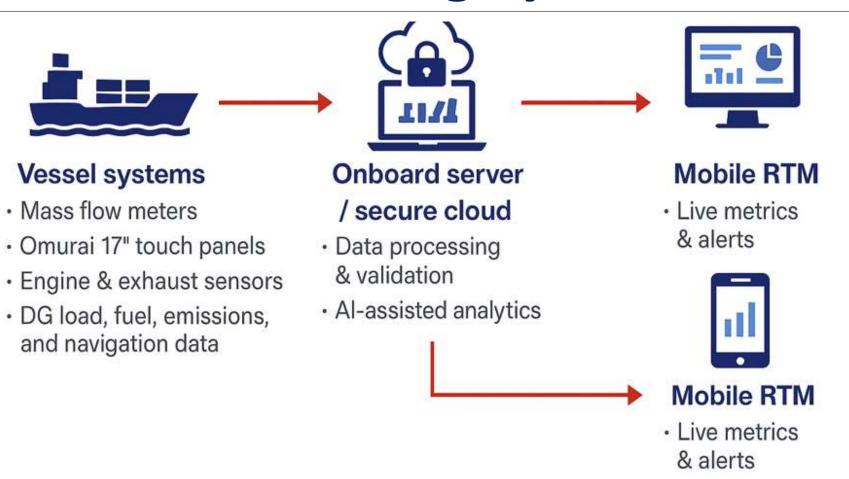
Key Digital Tools in Shipping

Where Digital Tools Achieve the Most

Key Digital Tool	Impact	Experience Role		
Voyage Optimization	5–10% fuel savings	Accurate performance interpretation		
Predictive Monitoring	Reduced downtime	Recognising early signs		
MRV/DCS/ETS Tools	Compliance & reporting	Validating real data		
Digital Twins	Safer testing	Model realism from experience		
	Voyage Optimization Predictive Monitoring MRV/DCS/ETS Tools	Voyage Optimization 5–10% fuel savings Predictive Monitoring Reduced downtime MRV/DCS/ETS Tools Compliance & reporting		

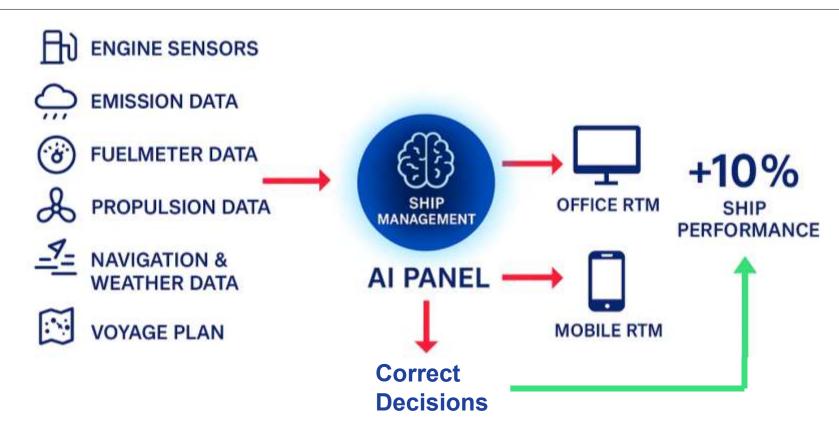
Data achieves results when experience gives it meaning

Where Digital Tools Cause Challenges

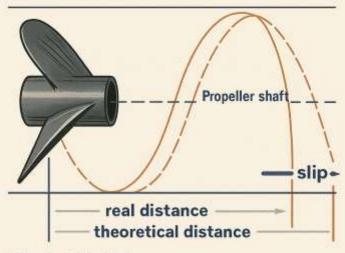


Challenge	Description				
Data Fragmentation	Different systems, formats, and no unified platform				
Cybersecurity Risks	Every connected device adds exposure points				
\$ High Implementation Cost	Implementation and training barriers for smaller operators				
Lack of Digital Skills	Crews and engineers need training to use new tools effectively				
Regulatory Uncertainty	Standards for digital data acceptance still evolving				

Digitalisation succeeds when we standardise, secure, and skill-up-not just connect everything.



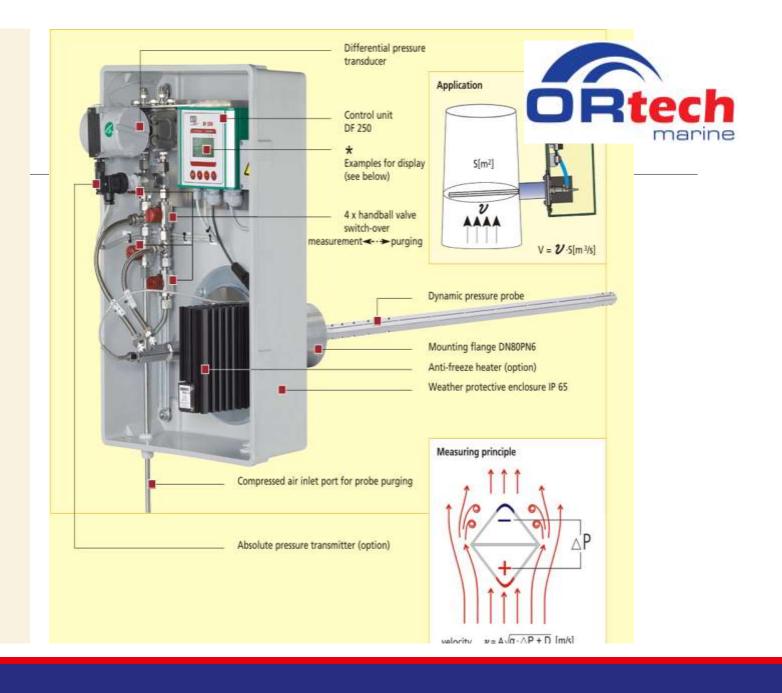
Real Time Monitoring System



What is a Ship Slip?

Ship slip is the difference between the speed of the Engine and the actual observed speed of the ship.

What is a Ship Slip?


Ship slip is the difference coverd or engine speed.

SLIP

Slip = 100% - Efficiency

Efficiency = observed distance covered or engine speed.

Positive slip is influenced by various reasons such as fouled bottom or hull part that offers resistance to the movement of the ship, environmental factors such as water current and wind

Exhaust gas monitoring

•Real-time CO₂ Tracking:

Continuous monitoring of carbon emissions for accurate reporting and compliance.

•Automated Reporting:

Streamlines environmental documentation for fleet operators.

Direct Sustainability Impact:

Reduces carbon footprint and supports greener maritime operations.

COMBUSTIBLES MONITOR

In-Situ Oxygen and Combustibles (COe) Transmitter

- All combustions with flue gas temperatures up to max. 3,092 "F (1,700 °C)
- . (4 different models, Compact / RT / HT & EX)
- Die casting aluminum enclosure with electronics, COe^k
- . COe measurement without the need of dilution
- Compressed air back-purge for RT / HT and EX model

Ships Operation Data Analysis

Power Emission		EQUIPMENT	CAPACITY	DAILY KW	YEARLY KW	FUEL ton	CO2 TON	C02 RATES	1KW	200	gr.Fuel
		MAIN ENGINE	10.000KW/h	168.000	34.440.000	6888	21352,8	0,79	200gr.f	uel 620	gr CO2
		AUX ENGINE	3X750KW/h	37.800	8.278.200	1655,64	5132,484	0,19	ME	0,6	P/P
		AUXBOILER	2.5k Kcal/h	13.968	859.032	171,81	532,60	0,02	AE	0,7	P/P
		EMERGENCY	300KW/h	5.400	5.400	1.08	3,35	0,00	AB	0,4	P/P
		LOADED SAILS	100 D/Y	168.000	16.800.000	3360	10416,00	0,39	YEAR	365	DAYS
	_	BALLASTED SAILS	60D/Y	144.000	8.640.000	1728,00	5356,80	0,20	FUEL T	3,10	TON CO2
Operati	onal	PASSAGE SAILS	45D/Y	120.000	5.400.000	1080,00	3348,00	0,12	SAILS	205	DAYS
Emisso	ns	BERTHED	80D/Y	28.800	2.304.000	460,8	1428,48	0,05	STOPS	160	DAYS
		ANCHORED	80D/Y	10.800	864.000	172,8	535,68	0,02	2500KCAI	/н 2,91	KW/h
Equipment Emission		COOLING PUMPS	600KW/h	14400	2.952.000	590,4	1830,24	0,47	•		
		AIRCONDITION	80KW	1920	700.800	140,16	434,50	0,11			
		REFRIGERATING	50KW/h	600	1.533.000	306,6	950,46	0,24			
		AIR COMPRESSOR	150KW/h	600	90.000	18	55,80	0,01			
		WINCHES	400KW/h	3200	256.000	51,2	158,72	0,04			
		BALLAST SYSTEM	400KW/h	6000	240.000	48	148,80	0,04			
		LIGHTENING	80KW/h	1536	560640	112,13	347,60	0,09			
						PROPULSION	27021,23	0,79			

Real Time Monitoring Applications

Engine 2 RPM

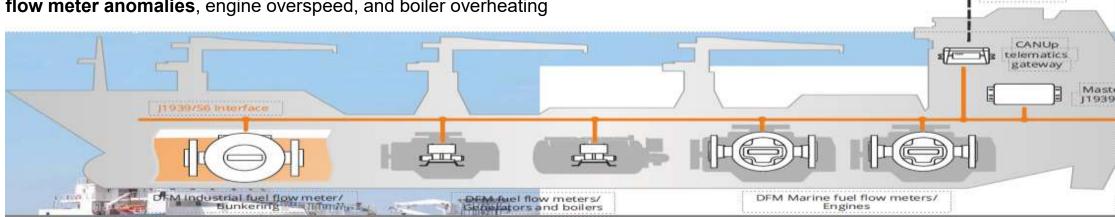
Engine T, RPM

Hourly fuel consumption. Vh.

ON Engine 1.... 28.03.2023 16.54

Low oil pressure Engine 2 28.03.2023 15.48

Bunkering start

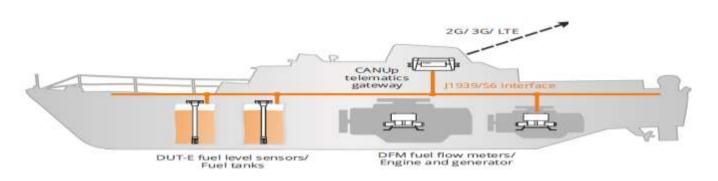

2G/3G/LTE

Operating Parameters

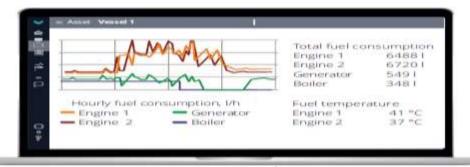
- ✓ Hourly fuel consumption of engines, diesel generators, and boilers
- ✓ Operating time of each fuel consumer in *Idle*, *Loading*, and *Overload* modes
- ✓ RPM, temperature of technical fluids, and data from additional sensors
- √ Location, route, and traveled distance
- ✓ Bunkering duration and volume of received fuel

Events

- ✓ On/off status of engine, generator, and boiler
- ✓ Fuel flow meter anomalies, engine overspeed, and boiler overheating


Application on Multitype Vessels

Operating Parameters


- √ Hourly fuel consumption of engines and diesel generators.
- ✓ Operating time of each fuel consumer by modes.
- √ Fuel level and volume in tanks.
- ✓ Location, route, and traveled distance.

Events

- ✓ On/off status of engine and generator.
- √ Fuel refueling and draining from tanks.
- √ Fuel flow meter cheating detection.

Conclusions

Every Vessel Has Value – Maintain, Retrofit, Sail On!

Digitalization = powerful enabler of decarbonisation

Successes: efficiency, transparency, compliance

Challenges: data, cost, cyber risk

Future depends on collaboration, interoperability, and trust

Ortech Marine – Your Tailwind at Sea,
 Keeping Your Fleet Sailing Strong

ORTECH MARINE A.Ş

Turkish Ship & Yacht Repair and Maintenance Company

Expert in engine automation, retrofitting, and overhauling.

Providing green technology; spare parts and reconditioning for ship equipment.

Thanks for listening
www.ortechmarine.com
www.omurkaratas.com
info@ortechmarine.com